Entries Tagged as ''

Light Your Haunt With Hacked LED Christmas Lights


Shove a bunch of LEDs into a can, then watch Ohm’s Law and Murphy’s Law duke it out.

Safely lighting our outdoor haunt has always been a compromise game. Every spotlight comes with an extension cord, and those routes have to be planned because haunt visitors are like free range chickens, or BBs. They run all over. Keeping the electrified snakes from attacking our chickens is a key responsibility that we don’t take lightly.

In an effort to reduce the snake population, we investigated other lighting options and came up with what seemed to be a viable alternative: Low voltage landscape lighting.

Haunt lighting planSpecifically, we built an assortment of LED spots, powered by a 12V 350W transformer over 12AWG low voltage power cable. Because the cable carries 12V DC current, it can be safely “tucked” an inch or so beneath the soil with just a spade.

Each lamp consists of a cluster of LED Christmas lights housed in a length of two-inch diameter PVC pipe, which is sealed and mounted to a post. The positive and negative leads are attached with wire nuts to a low voltage wire connector. The best part of this arrangement is that the connector can be attached to the power bus at any point along its length, allowing for greater flexibility in the layout of our lighting plan.

With fewer extension cords lying about, there are fewer opportunities for “unplanned interactions” between them and our guests. All we had to do was keep our chickens from tripping over the lamps.


The basic idea is to pack as many LEDs as possible into the can without setting any fires.  The not setting any fires part requires that we understand a few key concepts.  For example, why would I wire three or four LEDs in series, and then connect three or four of these series circuits together in parallel? If you know the answer, then you can go outside and play while the rest of the class catches up.

It is usually at this point in a dissertation on LEDs that the author devotes several paragraphs to a review of Ohm’s Law. Instead of heading off into those weeds, we’re going to wade through some other weeds.  We’ll tackle the math as we go.

How do LEDs work?

In the most general terms, a circuit is designed to operate at a particular voltage, and will draw as much current as it needs. An LED requires a certain minimal current to turn on. The “forward voltage” is the least amount of voltage required to allow current to flow through the LED. The amount of current changes (exponentially) based on the amount of voltage that is applied. A small increase in voltage results in a large increase in current. The more current, the brighter the light.  That is, until it overheats and dies.

There are two species of LED Christmas lights. One type consists of red, orange, yellow, green, and blue LEDs. The other type utilizes only a white LED encased in a colored plastic sheath or bulb. It’s important to know the difference because the latter type provides a simpler solution for our application. All the LEDs have the same power requirement: About 2V(forward), and about 3V(optimal), drawing about 20mA. For simplicity’s sake we’ll be discussing this type of LED.

Note: I had a zillion of the colored LEDs and no data sheet, which meant I had to employ my unpaid assistants, Trial and Error, to determine the power requirements for each color. I should mention that Trial was generally cautious during testing while Error ham-handedly blew through not a few LEDs.

Think of voltage as a sluice gate above a water wheel.

Say the gate is marked with stops, 1-12, that represent voltage.

Open the gate to 1 and a trickle of water flows over the wheel, but it’s not enough to make it turn.

Open the gate further to 2 and the wheel begins to turn. We’re at forward voltage, meaning the LED is on, but just barely. We need to apply more voltage (to get more current to flow) for it to glow more brightly.

Open the gate to 3 and now there’s enough power to grind some corn.

We’re at optimal voltage and the LED glows at the brightness for which it was designed.

If you go all the way to 12, then you, or the passive-aggressive engineer who built the gate, must have a grudge against the miller. Like the wheel about to fly off its axle, when you over-energize an LED, it may glow very brightly for a short period of time, but it’s toast.

Wiring LEDs in series

Series circuitAn LED is polarized, meaning it has a positive lead(anode) and a negative lead(cathode).  To wire two LEDs in series, connect the positive side of one to the negative side of the other.  Note: Always connect the anode to the positive side of the voltage source, and the cathode to the negative side of the voltage source.

How many LEDs can safely be connected in series? Simply add up the voltage requirement for each LED until you reach source voltage (12V in this case). Assuming 3V(20mA) for each LED, the answer is four (3V+3V+3V+3V=12V). This series circuit can handle 12V, and would draw 20mA.

I can’t get my LEDs to add up to exactly 12V

Three goes into 12 four times, which is nice. But suppose your LEDs can’t handle 3V, and instead prefer 2.5V. In that case, how do you get to an even number of LEDs?

  • Option I – Intentionally overload the circuit
    You can place 5 LEDs in series. Each LED would get 2.4V (12V / 5 = 2.4V), instead of 2.5V, which means they’ll be a little dimmer. But it might not be enough of a difference for you to notice. Then again, they might be a lot dimmer, in which case you’re on to your second option.
  • Option II – Use a resistor to drop excess voltage
    Place four LEDs in series. Since these four LEDs would only require 10V (2.5V * 4 = 10V), you need to drop the extra two volts with a resistor. The resistor value can be calculated with Ohm’s Law as R = V / I. If each LED requires 20mA (.02A), then the resistor value would be 100Ω. (2V / .02A = 100Ω) So, you would add a 100Ω resistor at one end of your series circuit to deal with that extra two volts.
  • Option III – Overdrive the circuit
    Don’t. You saw what happened to the miller.

Wiring LEDs in parallel

Four LED Christmas lights don’t emit much light, and we’ve determined that we can’t add more LEDs to our series circuit, so how do we pack more light into our lamp? Simple. Build four series circuits, then wire those together in parallel.

Four series circuits wired in parallelAt the end of each series circuit is a lead. One is positive, the other is negative. Connect the positive leads, connect the negative leads, and you now have a cluster. Each series circuit draws 20mA, so the cluster would draw a total of 80mA.

How many series circuits can be wired together in parallel to form a cluster? That depends on how much current your power supply can provide, and how good you are at packing everything together inside its container. Our 12V transformer is rated at 350W. To figure the total amount of current I can draw from the transformer, [I(Amps) = P(Watts) / V(Volts)] Therefore, 350W/12V = 29A, or 29,000mA.

Our transformer could, theoretically, provide current for roughly 362 clusters (80mA * 362 = 28,960mA).  That’s assuming, of course, that our power bus is a superconductor, or a spherical chicken in a vacuum.  It’s neither, so voltage losses in the power cable would probably be a limiting factor.  Still, you could pile on a lot of lamps without worrying about the transformer bursting into flames.

Coming up…

How to build a 12V LED lamp.

I know what you’re thinking.  We’re two articles into this project (if you count the introduction), and we haven’t yet glued anything to the workbench (silicone sealant is surprisingly adhesive) or accidentally hurled a hunk of PVC across the room (off the table saw, and I’m extremely lucky to still have two ears).

I figured it was a good idea to cover the more arcane aspects of the project first.  With these out of the way, the rest of the construction is a snap.

Introduction to a Hack

03Snug Harbor’s Christmas display got an upgrade last year when we switched to LED lights. It was a no-brainer, from a technical standpoint. Two strands of LEDs replaced a dozen strands of incandescent bulbs, minimizing potential failure points (i.e. those tiny little fuses housed in the plug), and removing all but one extension cord.

Your ol’ pal Spook isn’t a fan of hanging from the roof gables, and devoted readers know my general opinion of Christmas lights; they want to kill you. The less time I’m forced to devote to electrical engineering while poised forty feet in the air, the better. This, more than the energy savings, was the main selling point for me.

After not getting killed, I climbed down the ladder and went to the middle of the yard to survey my work. The day had been warm, but it was chilly now as the sun wandered off into the trees. The early evening had grown quiet as mothers called kids in for supper, steadily emptying yards up and down the street. I stood alone in my yard, looking up at our new LED Christmas lights, and it was a significantly disappointing moment in my life.

The words “glow” and “glare” are considered synonyms, but only in the sense that they both mean “radiate”. Instead of glowing warmly with the happy blush of electric gingerbread, Snug Harbor glared. And it glared coldly. With a perceptible seizure-inducing 60 Hertz flicker, its harsh blue-green aura had all the charm of a florescent light scowling over a meat locker.

Oh, those lights were ugly. But needs must when the devil drives, so I left them up. And that’s the story of how Shadow Wood came into a wealth of outdoor LED lights to hack the following season.

In Part II of this series, “Light your haunt with hacked LED Christmas lights“, or “I told you that story to tell you this one”, we’ll step through all the fiddly bits, discuss how to re-purpose a 12V low-voltage transformer to power the fiddly bits, and explore the reasons why this project is probably a bad idea.

Experimenting with LEDs

Red LED test

PVC - LED light tubes

Green LED "Blaster"

Shadow Wood 2014

Shadow Wood Cemetery

Shadow Wood Gallery

Haunted table

Tiny little haunted house

Okay, technically this is a haunt on a table.  Although, in order for a place to be haunted, its haunted-ness must come from somewhere.  A haunted tree isn’t bestowed the quality of “haunted” simply by living in a haunted wood, or forbidden forest.  That doesn’t happen until some ghost (or meandering kelpie) decides to take up housekeeping.

Now, the argument can be made that any tree in a haunted wood is itself haunted, to which my reply is:  While all Juggalos live in trailer parks, not all trailer parks are inhabited only by Juggalos.

So I suppose, by virtue of its resident haunt, an “action set” I made for Mrs. Spookyblue, which is in turn haunted by a pair of tiny ghosts, a Sheepdog, and a little Golden Retriever, the table is actually haunted.